Error Detection Using Linguistic Features

نویسندگان

  • Yongmei Shi
  • Lina Zhou
چکیده

Recognition errors hinder the proliferation of speech recognition (SR) systems. Based on the observation that recognition errors may result in ungrammatical sentences, especially in dictation application where an acceptable level of accuracy of generated documents is indispensable, we propose to incorporate two kinds of linguistic features into error detection: lexical features of words, and syntactic features from a robust lexicalized parser. Transformation-based learning is chosen to predict recognition errors by integrating word confidence scores with linguistic features. The experimental results on a dictation data corpus show that linguistic features alone are not as useful as word confidence scores in detecting errors. However, linguistic features provide complementary information when combined with word confidence scores, which collectively reduce the classification error rate by 12.30% and improve the F measure by 53.62%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Detection for Statistical Machine Translation Using Linguistic Features

Automatic error detection is desired in the post-processing to improve machine translation quality. The previous work is largely based on confidence estimation using system-based features, such as word posterior probabilities calculated from N best lists or word lattices. We propose to incorporate two groups of linguistic features, which convey information from outside machine translation syste...

متن کامل

Using Deep Morphology to Improve Automatic Error Detection in Arabic Handwriting Recognition

Arabic handwriting recognition (HR) is a challenging problem due to Arabic’s connected letter forms, consonantal diacritics and rich morphology. In this paper we isolate the task of identification of erroneous words in HR from the task of producing corrections for these words. We consider a variety of linguistic (morphological and syntactic) and non-linguistic features to automatically identify...

متن کامل

Extraction of Drug-Drug Interaction from Literature through Detecting Linguistic-based Negation and Clause Dependency

Extracting biomedical relations such as drug-drug interaction (DDI) from text is an important task in biomedical NLP. Due to the large number of complex sentences in biomedical literature, researchers have employed some sentence simplification techniques to improve the performance of the relation extraction methods. However, due to difficulty of the task, there is no noteworthy improvement in t...

متن کامل

High-Order Sequence Modeling for Language Learner Error Detection

We address the problem of detecting English language learner errors by using a discriminative high-order sequence model. Unlike most work in error-detection, this method is agnostic as to specific error types, thus potentially allowing for higher recall across different error types. The approach integrates features from many sources into the error-detection model, ranging from language model-ba...

متن کامل

Phishing website detection using weighted feature line embedding

The aim of phishing is tracing the users' s private information without their permission by designing a new website which mimics the trusted website. The specialists of information technology do not agree on a unique definition for the discriminative features that characterizes the phishing websites. Therefore, the number of reliable training samples in phishing detection problems is limited. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005